In geometry, a hypercube is an n-dimensional analogue of a square $(n=2)$ and a cube $(n=3)$. It consists in groups of opposite parallel line segments aligned in each of the space's dimensions, at right angles to each other and of the same length. An n-dimensional hypercube is also called an n-cube.

In parallel computing, the vertexes are processors, and the line segments (edges) represent connections. The n-cube architecture has the following properties:

- Each node has n connections with different processors.
- Each processor has a unique identifier, between 0 and $2^{n}-1$.
- Two processors are directly connected if and only if their identifiers differ in just one bit. For instance, in a 3 -cube, processors 3 (011 in binary) and 7 (111 in binary) are directly connected.
- The number of processors is 2^{n}

The new company WEFAIL is designing hypercubes, but they are always contracting new people, whose do not know all the hypercube properties, and sometimes they fail; thus these properties are not satisfied in all cases. Given an arbitrary graph, your task is to write a program that determines whether the graph is a hypercube or not.

Input

The input consists in several problem instances. Each instance contains one graph, which starts with a line with two positive integers: K and M, representing the number of vertexes ($0<K \leq 1024$) and the number of edges respectively. It follows $(0 \leq M \leq 5130)$ lines, representing the edges. Each edge is given by two 32 bits integers, representing the processors connected by the edge.

The end of input is indicated by a test case with $K=0$.

Output

For each problem instance, the output is a single line, with the word 'YES' if the corresponding graph is a hypercube, and 'NO' otherwise (quotes for clarity). The output must be written to standard output.

Sample Input

44
01
13
20
32
21
14
32
01
12
00

Sample Output

YES
NO
NO

