Being the expert programmer that you are, you have decided to put your skills to proper use by making life easier for all vehicle-riding inhabitants of Dhaka city. That is right, you are now in the middle of a project that will eliminate all traffic jams! In a sudden fit of enthusiasm you start to create the control software for those autonomous vehicles, only to realize it is harder than it seemed. You are now to create a small part of that software.

The case you need to handle is simply this: find the time of collision between two vehicles, both going at (possibly different) constant speeds, one of them in a straight line and the other in a circle in counterclockwise direction. You may assume that the vehicles are running on a flat 2D plane, and that they can be modeled as square of a given size with edges parallel to a fixed Cartesian coordinate system at all times.

Input

The input file may contain multiple test cases (at most 100). The first line of the input file consists of a single non-negative integer t, the number of test cases in the file. This line is followed by t test cases, each consisting of exactly two lines of input. The first line describes the vehicle going in a straight line and has the format ' $s_{A} x_{A} y_{A} v_{A x} v_{A y}$ ' (without the quotes). s_{A} is the length of each edge of the square representing this vehicle, $\left(x_{A}, y_{A}\right)$ is its starting point of the center of the square, $\left(v_{A x}, v_{A y}\right)$ is its velocity in unit distance traveled per unit time. The second line of input in a test case represents the vehicle going round in a circle, and has the format ' $s_{B} x_{B} y_{B} c_{x} c_{y} v_{B}$ '. Once again, s_{B} is the size of the square representing this vehicle, and $\left(x_{B}, y_{B}\right)$ is the starting point of the center of this square. $\left(c_{x}, c_{y}\right)$ is the center of the circular path followed by the center of this square, and v_{B} is its linear speed. All input numbers (other than t) are real numbers with at most two decimal places. They will also satisfy the following constraints: $\left|x_{A}\right|,\left|y_{A}\right|,\left|x_{B}\right|,\left|y_{B}\right|,\left|c_{x}\right|\left|c_{y}\right| \leq 20000,\left|v_{A x}\right|,\left|v_{A y}\right| \leq 200$, $0 \leq v_{B} \leq 200,0<s_{A}, s_{B} \leq 100$. It is also guaranteed that the two squares do not already overlap in their given starting states.

Output

There should be a single line of output for each test case in the input file, and it should have the format 'Case $c: \quad t$ '. c is the case number, starting from 1 , and t is the time it takes before the vehicles collide. Values within an absolute error of 10^{-5} of the actual answer will be accepted. If they never collide after starting in the state given, t should be replaced with the string 'never'. Note that, for this problem, just grazing across the sides or just touching corners is not considered a collision.

Sample Input

```
2
```

$2-10-1011$
2050010
2 -10 -1011
205001

Sample Output

Case 1: 7.216133
Case 2: never

