Dilu have learned a new thing about integers, which is - any positive integer greater than 1 can be divided by at least one prime number less than or equal to that number. So, he is now playing with this property. He selects a number N. And he calls this D.

In each turn he randomly chooses a prime number less than or equal to D. If D is divisible by the prime number then he divides D by the prime number to obtain new D. Otherwise he keeps the old D. He repeats this procedure until D becomes 1 . What is the expected number of moves required for N to become 1 .
[We say that an integer is said to be prime if its divisible by exactly two different integers. So, 1 is not a prime, by definition. List of first few primes are $2,3,5,7,11, \ldots]$

Input

Input will start with an integer $T(T \leq 1000)$, which indicates the number of test cases. Each of the next T lines will contain one integer $N(1 \leq N \leq 1000000)$.

Output

For each test case output a single line giving the case number followed by the expected number of turn required. Errors up to 1e-6 will be accepted.

Sample Input

3
1
3
13

Sample Output

Case 1: 0.0000000000
Case 2: 2.0000000000
Case 3: 6.0000000000

