The puzzle game Slitherlink is played on a grid. Each cell of the grid contains either a space or an integer from 0 to 3 . The goal is to draw in some grid lines connecting vertically or horizonally adjacent points on the grid subject to the following constraints:

1. If a grid cell is numbered k then exactly k out of the 4 adjacent grid lines are drawn.
2. The grid lines form a single loop that does not cross itself.

Determining if a given instance of a Slitherlink puzzle can be completed or not is NP-complete which means nobody knows of an efficient algorithm to solve the problem for large grids. Your task is simpler. Given an instance of a Slitherlink puzzle and a proposed solution, you are to check that the solution indeed satisfies the constraints for that puzzle.

For example, the first sample input is not valid since there are 2 grid lines drawn adjacent to a cell numbered 1. The second, third, and fourth samples are invalid since the grid lines do not form a single loop. However, the fifth sample is valid.

Input

The first integer denotes the number of test cases to follow. Each test case is specified by a line containing two positive integers R and C (both at most 50) followed by a grid of $2 R+1$ rows of $2 C+1$ characters. The contents of row r and column c (counting from 1) are as follows:

1. if both r and c are odd then the character is a ' + ' indicating a grid point
2. if both r and c are even then the character is either a space or one of $0,1,2$, or 3 indicating the contents of the corresponding grid space
3. if r is odd and c is even then the character is either a space or ' - ' indicating a drawn horizontal grid line
4. if r is even and c is odd then the character is either a space or ' l ' indicating a drawn vertical grid line

You can assume all inputs are well-formed descriptions of a Slitherlink puzzle and a proposed solution. A blank line also precedes each test case

Output

The output for each test case is a single line containing either 'Valid' or 'Invalid', depending on whether the proposed solution is valid or not.

Sample Input

5

33

+ +-+
1| |2
+-+ +-+
| 1 |
+-+-+ +
$1 \quad \mid 3$
+ + +-+
23
+-+ +-+
|3| |3|
+ + + +

|3| |3|
+-+ +-+

22
+-+-+
|3|3|
$+++$
|3|3|
+-+-

22
$+-+$
21 |
+-+-+
| 12
+-+ +

34

+ +-+-+
| |2
+-+ + +-+
$130 \quad 31$
+-+ +-+-+
| | 1
$++-+++$

Sample Output

Invalid

Invalid
Invalid
Invalid
Valid

