
These days, it has become com-
monplace to make purchases
over the internet using a credit
card. However, because credit
card numbers are relatively
long, it is easy to make a mis-
take while typing them in. In
order to quickly identify errors
like typos, most e-commerce
websites use a checksum algo-
rithm to verify credit card num-
bers.

One popular checksum algo-
rithm is the Luhn algorithm,
which can detect any single-digit error as well as many common multiple-digit errors:

1. Starting with the second-last digit and moving backwards, double every other digit to obtain a
list of numbers.

2. Add up the digits of these numbers, then add the undoubled digits from the original number.
Sum the two results.

3. If the total ends in a 0, the credit card number is valid, and it is invalid otherwise.

For example, using the number 5181 2710 9900 0012:

1. Double the appropriate digits (5181 2710 9900 0012) to obtain the values: 10, 16, 4, 2, 18, 0, 0,
2.

2. Add up the digits of these values to get (1+0) + (1+6) + 4 + 2 + (1+8) + 0 + 0 + 2 = 25. The
sum of the undoubled digits is 1+1+7+0+9+0+0+2 = 20, so the total is 20+25=45.

3. 45 does not end in a 0, so this credit card number is invalid.

For this problem, you must write a program that checks the validity of credit card numbers according
to the Luhn algorithm.

Input

The input begins with a number N on a single line, followed by N lines each containing a single credit
card number. Each credit card number consists of 16 decimal digits in groups of four separated by
single spaces.

Output

The output consists of one line for each input credit card number. If the credit card number is valid,
this line consists of the string ‘Valid’, otherwise it reads ‘Invalid’.

Sample Input

2

5181 2710 9900 0012

5181 2710 9900 0017

Sample Output

Invalid

Valid


