Corner the queen is a game played on $n \times n$ chess like board with two players. The rows and columns are numbered from 0 to $n-1$. Then a queen is placed on a random cell other than $(0,0)$. Each player gives one move of the queen towards the cell $(0,0)$. The move is like a chess queen. As you know a queen can move any number of cells horizontally, vertically or diagonally. In Formal a player can move a queen from cell $\left(a_{1}, b_{1}\right)$ to cell $\left(a_{2}, b_{2}\right)$ if ($a_{1}=a_{2}$ or $b_{1}=b_{2}$ or $\left.\left|a_{1}-a_{2}\right|=\left|b_{1}-b_{2}\right|\right)$. Moreover in this game, move that takes queen away from the cell $(0,0)$ horizontally or vertically or diagonally is not allowed. Formally, if a player moves queen from cell $\left(a_{1}, b_{1}\right)$ to $\left(a_{2}, b_{2}\right)$ then ($a_{2} \leq a_{1}$ and $b_{2} \leq b_{1}$) must be held. The player who
 first reaches the cell $(0,0)$ is the winner. Now you may already have guessed if both the players play optimally, the starting position determines the winner. For some cell like $(2,0)$ player 1 always wins and for some cell like $(1,2)$ player 2 always wins.

In this problem we consider an infinite chess board for playing the game. A rectangular region is specified. A cell from that region will be picked randomly as a starting position for the queen. All you have to find is the probability that player 1 wins assuming that both players will play optimally.

Input

The first line of input will be a number $T(T \leq 15000)$ the number of test cases. Each of the following T lines will contain four integers $x_{1}, y_{1}, x_{2}, y_{2}\left(0 \leq x_{1} \leq x_{2} \leq 1000000,0 \leq y_{1} \leq y_{2} \leq 1000000\right)$. Here $\left(x_{1}, y_{1}\right)$ is the lower left and $\left(x_{2}, y_{2}\right)$ is the upper right portion of the rectangle. The lowest-leftmost cell is $(0,0)$ and it is always outside the given rectangle.

Output

For each line of input produce one line of output in the format 'Board X : n / d '. Here X is the number of case, n and d is the numerator and denominator of the probability expressed in reduced form. See the sample input and output for illustration.

Sample Input

3
1022
1070
1212

Sample Output

Board 1: 2 / 3
Board 2: 1 / 1
Board 3: 0 / 1

