A prime number is a natural number which has exactly two distinct natural number divisors. First few prime numbers are: $2,3,5,7,11,13, \ldots$ and so on.

A non decreasing prime sequence (NDPS) is a sequence of prime numbers where i-th element is not less than $(i-1)$-th element for all $i>1$. The weight of a NDPS is the product of all numbers of the sequence. Here are some examples of NDPSs with their corresponding weights.

NDPS	Weight
2	2
2513	$130(2 \times 5 \times 13)$
2397	$582(2 \times 3 \times 97)$

An NDPS a is smaller than another NDPS b, if number of elements in a is smaller than the number of elements in b. If a and b has same number of elements then lexicographically smaller sequence is the smaller NDPS. For the list given above, $\{2\}$ is the smallest sequence because it has only one elements. $\{2513\}$ and $\{2397\}$ both have 3 elements, so $\{2397\}$ is second smallest because it is lexicographically smaller than $\left\{\begin{array}{ll}5 & 13\end{array}\right\}$.

For a given range (A, B), where $A \leq B$, you have to find the K-th smallest NDPS between all the NDPSs having weights in between A and B (inclusive).

Input

Input will start with an integer $T(T \leq 5000)$, the number of test cases. Each of the next T line will contain three integers A, B and $K(2 \leq A \leq B \leq 1000000)$. K is a positive integer and you can safely assume that at least K NDPSs exists in the given range.

Output

For each case, you have to output one line, case number followed by the K-th smallest NDPS between all the NDPSs having weights between A and B (inclusive). See sample output for exact format.

Sample Input

3
2101
2105
2109

Sample Output

Case 1: 2
Case 2: 22
Case 3: 222

