A prime number is a natural number which has exactly two distinct natural number divisors. First few prime numbers are: 2, 3, 5, 7, 11, 13, ... and so on.

A non decreasing prime sequence (NDPS) is a sequence of prime numbers where *i*-th element is not less than (i - 1)-th element for all i > 1. The weight of a NDPS is the product of all numbers of the sequence. Here are some examples of NDPSs with their corresponding weights.

NDPS	Weight
2	2
$2\ 5\ 13$	$130\ (2\times5\times13)$
2 3 97	$582 (2 \times 3 \times 97)$

An NDPS *a* is smaller than another NDPS *b*, if number of elements in *a* is smaller than the number of elements in *b*. If *a* and *b* has same number of elements then lexicographically smaller sequence is the smaller NDPS. For the list given above, $\{2\}$ is the smallest sequence because it has only one elements. $\{2 \ 5 \ 13\}$ and $\{2 \ 3 \ 97\}$ both have 3 elements, so $\{2 \ 3 \ 97\}$ is second smallest because it is lexicographically smaller than $\{2 \ 5 \ 13\}$.

For a given range (A, B), where $A \leq B$, you have to find the K-th smallest NDPS between all the NDPSs having weights in between A and B (inclusive).

Input

Input will start with an integer T ($T \le 5000$), the number of test cases. Each of the next T line will contain three integers A, B and K ($2 \le A \le B \le 1000000$). K is a positive integer and you can safely assume that at least K NDPSs exists in the given range.

Output

For each case, you have to output one line, case number followed by the K-th smallest NDPS between all the NDPSs having weights between A and B (inclusive). See sample output for exact format.

Sample Input

Sample Output

Case 1: 2 Case 2: 2 2 Case 3: 2 2 2