A look-and-say sequence is a sequence of integers, expressed in decimal notation, where each sucessive term is generated by describing the previous one.

For instance, if x_{1} (the first term of the sequence) is 1 , the next term is the description of this term, 11 ("one 1"), which is described by 21 ("two 1 's"), which is described by 1211 ("one 2 one 1 "), etc.; the series continues 111221, 312211, 13112221, ...

Your problem is to build a program that, given the first term of a look-and-say sequence x_{1}, calculates the j-th digit of the i-th term, x_{i}.

Input

Each line in the input corresponds to a test case specified by 3 integer values: x_{1}, i and j, with $1 \leq x_{1} \leq 1000,1 \leq i \leq 1000$ and $1 \leq j \leq \min \left(\left\lfloor\log _{10}\left(x_{i}\right)+1\right\rfloor, 1000\right)$. The end of the input is indicated by a line ' 000 '.

Output

For each test case, the program must output a line with the j-th digit of the term x_{i} of the look-and-say sequence that starts with the term x_{1}.

Sample Input

131
132
172
12331
000

Sample Output

2
1
3
3

