A permutation is a sequence of integers which contains each integer from 1 to n exactly once. In this problem we are looking for permutations with special properties:

1. Antimonotonic: for each consecutive 3 values $p_{i-1}, p_{i}, p_{i+1}(1<i<n), p_{i}$ should either be the smallest or the biggest of the three values.
2. Cyclic: The permutation should consist of only one cycle, that is, when we use p_{i} as a pointer from i to p_{i}, it should be possible to start at position 1 and follow the pointers and reach all n positions before returning to position 1 .

Input

The input file contains several test cases. Each test case consists of a line containing an integer n, $\left(3 \leq n \leq 10^{6}\right)$, the number of integers in the permutation. Input is terminated by $n=0$.

Output

For each test case print a permutation of the integers 1 to n which is both antimonotonic and cyclic. In case there are multiple solutions, you may print any one. Separate all integers by whitespace characters.

Sample Input

3
5
10
0

Sample Output

312
45231
61029354718

