
Consider strings formed from characters from an alphabet of size K. For example, if K = 4, our
alphabet might be {a,b,c,d}, and an example string is bbcac.

For a string S, define count(S, k) to be the number of occurrences of the symbol k in S. For example,
count(bbcac, b) = 2 and count(bbcac, a) = 1.

A prefix of a string S is any string obtained from S by deleting some (possibly none) of the trailing
characters of S. For example, the prefixes of acb are the empty string, a, ac, and acb.

A string S has “nice prefixes” if for every prefix P of S and for every two characters k1 and k2 in
the alphabet, |count(P, k1) − count(P, k2)| ≤ 2. For example, bbcac has nice prefixes, but abbbc does
not because count(abbb, b) = 3 and count(abbb, c) = 0.

Count the number of strings of length L on an alphabet of size K that have nice prefixes. This
number can be large, so print its remainder when divided by 1000000007.

Input

The first line of input contains a single integer, the number of test cases to follow. Each test case
is a single line containing the two integers L and K, separated by spaces, with 1 ≤ L ≤ 1018 and
1 ≤ K ≤ 100.

Output

For each test case, output a single line containing the number of strings of length L on an alphabet of
size K that have nice prefixes, modulo 1000000007.

Sample Input

1

4 2

Sample Output

12

