Consider strings formed from characters from an alphabet of size K. For example, if $K=4$, our alphabet might be $\{a, b, c, d\}$, and an example string is bbcac.

For a string S, define count (S, k) to be the number of occurrences of the symbol k in S. For example, $\operatorname{count}(b b c a c, b)=2$ and $\operatorname{count}(b b c a c, a)=1$.

A prefix of a string S is any string obtained from S by deleting some (possibly none) of the trailing characters of S. For example, the prefixes of $a c b$ are the empty string, $a, a c$, and $a c b$.

A string S has "nice prefixes" if for every prefix P of S and for every two characters k_{1} and k_{2} in the alphabet, $\left|\operatorname{count}\left(P, k_{1}\right)-\operatorname{count}\left(P, k_{2}\right)\right| \leq 2$. For example, bbcac has nice prefixes, but $a b b b c$ does not because $\operatorname{count}(a b b b, b)=3$ and $\operatorname{count}(a b b b, c)=0$.

Count the number of strings of length L on an alphabet of size K that have nice prefixes. This number can be large, so print its remainder when divided by 1000000007 .

Input

The first line of input contains a single integer, the number of test cases to follow. Each test case is a single line containing the two integers L and K, separated by spaces, with $1 \leq L \leq 10^{18}$ and $1 \leq K \leq 100$.

Output

For each test case, output a single line containing the number of strings of length L on an alphabet of size K that have nice prefixes, modulo 1000000007 .

Sample Input

1
42

Sample Output

