You are given a 3D grid, which have dimensions N, M and P. Each of the $M \times N \times P$ cells has a light. Initially all lights are off. You will have K turns. In each of the K turns,

- You will select a cell A randomly from the grid
- You will select a cell B randomly from the grid
- Toggle the states of all the bulbs bounded by cell A and cell B, ie make all the ON lights OFF and make all the OFF lights ON which are bounded by A and B. To be more clear, consider cell A is $\left(x_{1}, y_{1}, z_{1}\right)$ and cell B is $\left(x_{2}, y_{2}, z_{2}\right)$. Then you have to toggle all the bulbs in grid cell (x, y, z) where $\min \left(x_{1}, x_{2}\right) \leq x \leq \max \left(x_{1}, x_{2}\right), \min \left(y_{1}, y_{2}\right) \leq y \leq \max \left(y_{1}, y_{2}\right)$ and $\min \left(z_{1}, z_{2}\right) \leq z \leq \max \left(z_{1}, z_{2}\right)$.

How many bulbs are expected to be ON after K turns?
Note: A and B can be the same cell.

Input

First line of the input is an integer $T(T<101)$ which denotes the number of test cases. Each of the next T lines represents one test case by 4 integers $N, M, P(0<M, N, P<101)$ and $K(0 \leq K \leq 10000)$ separated by spaces.

Output

Output one line for each test cases giving the expected number of ON lights. Up to 1E-6 error in your output will be acceptable. Print the case number followed by the output. Look at the sample output for exact format.

Sample Input

2
2341
2342

Sample Output

Case 1: 6.3750000000
Case 2: 9.0976562500

