Sun System \& Network Admin Manual

My appartment has n computers. My friend's appartment also has n computers. In each appartment, some pairs of computers are connected to each other with AcidNet cables (ignoring the routers). Each connection has a certain bandwidth (in bytes per second). My friend always brags about the speed of his computer network. He always shows me his n-by- n table that lists the bandwidths between each pair of computers. My network is slower, and I want to rebuild it. So I want to know how I should connect my computers in order to have the same n-by- n bandwidth table.

Since I don't want to buy too many AcidNet cables, you'll need to find a solution with the minimum number of connections. You may use AcidNet cables of any integer bandwidth - they all have the same price at my local Imaginary Hardware Store.

Given a graph, you can compute the all-pairs maximum flow table, right? Now do the opposite: given an n-by- n symmetric table, find a graph with fewest edges that has the given table of all-pairs maximum flows.

Input

The first line of input gives the number of cases, $N . N$ test cases follow. Each one is a line containing $n(0<n \leq 200)$, followed by n lines with n integers each, giving the table T.

- $T[u][u]$ will always be 0 .
- $T[u][v]$ will always be positive and equal to $T[v][u]$.
- $T[i][j] \leq 10000$
$T[u][v]$ is the largest possible speed (in bytes per second) for sending information from computer u to computer v, assuming there is no other traffic on the network.

Output

For each test case, output one line containing 'Case $\# x$:' followed by m - the number of cables I have to buy. The next m lines will each contain 3 integers u, v and w meaning that I need to connect computer u to computer v using an AcidNet cable of bandwidth w. Computers are numbered starting at 0 .

If there is no solution, print 'Impossible'.

Sample Input

4
2
010
100
3
011
102
120
1
0
4
0221
2022
2202
1220

Sample Output

```
Case #1: 1
```

0110
Case \#2: 2

011
122
Case \#3: 0
Case \#4: Impossible

