Let K_{n} denote the complete undirected graph with n vertices where n is an even number. In other words, K_{n} is a graph with n vertices where every two vertices are connected. Your task is to find the maximum number of spanning trees of K_{n} that can be formed in such a way that no two of these spanning trees have a common edge.

Input

Each test case will have an even integer $n(2 \leq n \leq 400)$, the number of vertices. The last test case will be followed by a single ' 0 ' denoting end of input.

Output

For each test case, print a line in the format, 'Case $X: \quad Y^{\prime}$, where X is the case number $\& Y$ is the maximum possible number of spanning trees.

Sample Input

4

0

Sample Output

Case 1: 2

