
In a distributed system, data is never where you need it, and fetching data
over a network takes time and consumes bandwidth. The problem can be
mitigated by adding a cache, where a node stores some resources locally
and if those resources need to be used again, it can simply take them from
its cache rather than asking someone else for them.

However, caches have a nasty tendency to fill up, so at some point,
objects must be evicted from the cache to make room for new objects.
Choosing what object to remove from the cache is not easy and there are
several different algorithms to choose from.

The marvelous Apes in Computing Machinery have come up with a fantastic new algorithm, the
Introspective Caching Algorithm, named after a city of Peru. It consists of some extra hardware (a very
small, precognitive monkey) which helps making decisions. Since the monkey can see into the future,
she knows exactly what objects will be accessed and in what order, and using this information she will
make optimal decisions on what objects to remove from the cache. Optimality here means that she will
minimize the number of times an object is read into the cache.

All object accesses go through the cache, so every time an object is accessed, it must be inserted
into the cache if it was not already there. All objects are of equal size, and no writes occur in the
system, so a cached object is always valid. When the system starts, the cache is empty.

You have been tasked with evaluating the monkey’s performance, and feeding her the occasional
banana.

Input

The input file contains several test cases, each of them as described below.
The first line of input contains three integers, separated by single spaces, telling you how many

objects fit in the cache, 0 < c ≤ 10000, how many different objects are in the system, c ≤ n ≤ 100000,
and how many accesses, 0 ≤ a ≤ 100000, will occur. The following a lines contain a single integer
between 0 and n − 1 (inclusive) indicating what object is accessed. The first line corresponds to the
first object accessed access and the last line to the last.

Output

For each test case, write to the output the least number of times an object must be read into the cache
to handle the accesses listed in the input, on a line by itself.

Sample Input

1 2 3

0

0

1

3 4 8

0

1

2

3

3

2

1

0

Sample Output

2

5


