A simple undirected graph is an ordered pair G = (V, E) where V is a non-empty set of vertices, and E is a set of unordered pairs (u, v) where u and v are in V and $u \neq v$. If S is a set, define |S| as the size of S. An incidence matrix M is a $|V| \times |E|$ matrix where M(i, j) is 1 if edge j is incident to vertex i (edge j is either (i, u) or (u, i)) and 0 otherwise.

Given an $n \times m$ matrix, can it be an incidence matrix of a simple undirected graph G = (V, E) where |V| = n and |E| = m?

Input

The first line of the input contains an integer t ($1 \le t \le 41$), the number of test cases.

Each test case starts with a line with two integers n $(1 \le n \le 8)$ and m $(0 \le m \le n(n-1)/2)$. Then n lines containing m integers (0's or 1's) each follow such that the j-th number on the i-th line is M(i,j).

Output

For each test case print 'Yes' if the incidence matrix given in the input can be an incidence matrix of some simple undirected graph, otherwise print 'No'.

Sample Input

3 3 1 1 0

3

- 0 1 1
- 1 0 1
- 3 1
- 1 1
- 0 3 3
- 1 1 0 1 1 1
- 1 0 0

Sample Output

Yes

Yes

No