There is a grid with N rows and M columns. The rows are numbered from 0 to $N-1$ and columns are numbered from 0 to $M-1$. Each of the cell in row 0 and each of the cell in column 0 contains a bulb. Except the cell in row 0 and column 0 is empty. All the other rows can contain a switch. The switch in the cell on row r and column c change the states of both bulbs in row r and column c. You are given the initial states and the desired states of each of the bulb. Now given a list of switches you need to press them in such a way that all the bulbs change their states from their initial to desired states.

Input

Input contains multiple test cases. First line contains T the number of test cases. Each of the test case consists of 7 lines.

1. 3 space separated integers $N(1 \leq N \leq 1000), M(1 \leq M \leq 1000)$ and $S(1 \leq S \leq 4000)$. N is the number of rows in the grid, M is the number of columns in the grid and S is the number of switches.
2. $N-1$ space separated integers. Each of these integers is either ' 0 ' or ' 1 '. The i-th (i starts from 1) denotes the initial state of the bulb in $(i, 0) .0$ means off and 1 means on.
3. $N-1$ space separated integers. Each of these integers is either ' 0 ' or ' 1 '. The i-th (i starts from 1) denotes the final state of the bulb in $(i, 0)$.
4. $M-1$ space separated integers. Each of these integers is either ' 0 ' or ' 1 '. The i-th (i starts from 1) denotes the initial state of the bulb in $(0, i)$.
5. $M-1$ space separated integers. Each of these integers is either ' 0 ' or ' 1 '. The i-th (i starts from 1) denotes the final state of the bulb in $(0, i)$.
6. S space separated integers. Each of these integers is between 1 and $N-1$ inclusive. The i-th (i starts from 0) integers denote the row number of the i-th switch.
7. S space separated integers. Each of these integers is between 1 and $M-1$ inclusive. The i-th (i starts from 0) integers denote the column number of the i-th switch.

There is a blank line after each of the test case. There will be 100 test cases.

Output

For each test case output contains a single line. When there is no way to transform the state of all the bulbs the line contains ' -1 '. Otherwise the line starts with X followed by X integers. X is the number of switch presses required to transform all the bulbs into the desired states. X should be less than 10000. The next X integers denotes the indices of the switches that need to be pressed. All of these X integers should be distinct. Any combination of switch presses that transforms all the bulbs to their desired state will be considered correct.

Sample Input

3
332
00
10
00
01
12
12
333
00
11
00
11
112
122
445
000
011
000
101
11223
13122

Sample Output

-1
202
40134

