Given N and K find the N-th permutation of the integers from 1 to K when those permutations are lexicographically ordered. N starts from 0 . Since N is very large N will be represented by a sequence of K non-negative integers $S_{1}, S_{2}, \ldots, S_{k}$. From this sequence of integers N can be calculated with the following expression.

$$
\sum_{i=1}^{K} S_{i} *(K-i)!
$$

Input

First line of the input contains $T(\leq 10)$ the number of test cases. Each of these test cases consists of 2 lines. First line contains a integer $K(1 \leq K \leq 50000)$. Next line contains K integers $S_{1}, S_{2}, \ldots, S_{k}$. ($0 \leq S_{i} \leq K-i$).

Output

For each test case output contains N-th permutation of the integers from 1 to K. These K integers should be separated by a single space.

Sample Input

4
3
210
3
100
4
2110
4
1210

Sample Output

321
213
3241
2431

