In-circle of a triangle is the circle that touches all the three sides of the triangle internally. The center of the in-circle of a triangle happens to be the common intersection point of the three bisectors of the internal angles. In this problem you will not be asked to find the in-circle of a triangle, but will be asked to do the opposite!!

You can see in the figure above that the in-circle of triangle $A B C$ touches the sides $A B, B C$ and CA at point P, Q and R respectively and P, Q and R divides AB, BC and CA in ratio $m_{1}: n_{1}, m_{2}: n_{2}$ and $m_{3}: n_{3}$ respectively. Given these ratios and the value of the radius of in-circle, you have to find the area of triangle ABC .

Input

First line of the input file contains an integer $N(0<N<50001)$, which denotes how many input sets are to follow. The description of each set is given below.

Each set consists of four lines. The first line contains a floating-point number $r(1<r<5000)$, which denotes the radius of the in-circle. Each of the next three lines contains two floating-point numbers, which denote the values of $m_{1}, n_{1}, m_{2}, n_{2}, m_{3}$ and $n_{3}\left(1<m_{1}, n_{1}, m_{2}, n_{2}, m_{3}, n_{3}<50000\right)$ respectively.

Output

For each set of input produce one line of output. This line contains a floating-point number that denotes the area of the triangle ABC. This floating-point number should contain four digits after the decimal point. Errors less than $5 * 10^{-3}$ will be ignored. Use double-precision floating-point number for calculation.

Sample Input

2

140.9500536497
15.3010457320550 .3704847907
464.968168185265 .9737378230
55.013244638410 .7791711946
208.2835101182
145.77258914198 .8264176452
7.6610997600436 .1911036207
483.6031801012140 .2797089713

Sample Output

