A group of archaeologists have come across a new kind of number pattern while analyzing the hieroglyphs patterns in 'The not so great pyramid'. They have decided to call these numbers 'Pyramid numbers'.

A number n is called a Pyramid number if we can partition n into k positive integers $x_{i}(1 \leq i \leq k)$ such that

$$
\sum_{i=1}^{k} \frac{1}{x_{i}}=1 . \text { For example, } 1=\frac{1}{2}+\frac{1}{2}
$$

So, $4(2+2)$ is a Pyramid number.
A number n is called a Strictly Pyramid number if we can partition n into k distinct positive integers $x_{i}(1 \leq i \leq k)$ such that

$$
\sum_{i=1}^{k} \frac{1}{x_{i}}=1 . \text { For example, } 1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}
$$

Here, $11(2+3+6)$ is Strictly Pyramid whereas in the above example, 4 is Pyramid but not Strictly Pyramid.

Given two positive integers $a \& b$, find the number of Strictly Pyramid numbers between $a \& b$ (inclusive).

Input

The first line of the input file will contain an integer $T(T \leq 100)$, the number of test cases. Each of the following T lines will be consisting of 2 integers $a \& b(1 \leq a, b \leq 1000000)$.

Output

For each test case, print an integer which is the number of Strictly Pyramid numbers between $a \& b$ (inclusive).

Sample Input

5

110
111
1100
7080
110120

Sample Output

