A unit fraction has the form $\frac{1}{k}$ where k is a positive integer.
In 1800 B.C., egyptian mathematicians represented rational numbers between 0 (exclusive) and 1 (inclusive) as finite sums of the form

$$
\frac{1}{k_{1}}+\ldots+\frac{1}{k_{n}}
$$

where all the denominators were distinct positive integers.
In 1948 A.C., Paul Erdős and Ernst G. Straus formulated the following conjecture about the unit fractions: for all positive integer $n \geq 2$, the rational fraction $4 / n$ can be expressed as the sum of three unit fractions. In other words, it is believed that for each n greater than 1 , there exist positive integers x, y and z such that

$$
\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

The conjecture has been tested for all $n<10^{14}$. It remains unknown if the conjecture is a theorem or not.

Given an integer $n \geq 2$, your job is to find three positive integers x, y, z whose values verify the Erdős-Straus conjecture.

Input

The problem input consists of several cases, each one defined in a line that contains an integer number n such that $\left(2 \leq n<10^{4}\right)$.

A line with $n=0$ indicates the end of the input.

Output

For each case in the input, you must print a line with numbers x, y and z (separated by spaces) such that $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ and $0<x, y, z<10^{16}$.

You can print any solution. It's guaranteed that every case in the input has a solution such that $0<x, y, z<10^{16}$.

Sample Input

Sample Output

5630
122
4414

