Bender is a robot built by Mom's Friendly Robot Company at its plant in Tijuana, Mexico in 2996. He is a Bending-Unit 22, serial number 2716057 and chassis number 1729. He was created for the task of bending metal wires.

Bender needs to bend a wire of length L ($L \geq 2$ an integer). The wire is represented in the Bender's brain (a MOS Technology 6502 microprocessor) as a line stucked in the origin of a tridimensional cartesian coordinate system, and extended along the x positive axis (+x), so that the fixed extreme of the wire is in the coordinate $(0,0,0)$ and the free extreme of the wire is in the coordinate $(L, 0,0)$.

Bender bends the wire at specific points, starting at the point ($L-1,0,0$) and ending at the point $(1,0,0)$. For each i from $L-1$ to 1 , Bender can take one of the following decisions:

- Not to bend the wire at point $(i, 0,0)$.
- To bend the wire at point $(i, 0,0)$ an angle of $\frac{\pi}{2}$ to be parallel to the axis $+\mathrm{y},-\mathrm{y},+\mathrm{z}$ or -z .

For example, if $L=3$ and Bender bends the wire at $(2,0,0)$ on the +y axis direction, and at $(1,0,0)$ on the -y axis direction, the result would be:

Given a sequence of bends, you must determine what direction is pointed by the last segment of the wire (+x in the example). You can suppose that the wire can intercept itself, after all it is the future!

Input

The first line of each test case gives an integer $L(2 \leq L \leq 100000)$ indicating the length of the wire.
The second line of each test case contains the $L-1$ decisions taken by Bender at each point, separated by spaces. The j-th decision in the list (for each $1 \leq j \leq L-1$) corresponds to the decision taken at the point ($L-j, 0,0$), and must be one of the following:

- 'No' if the wire isn't bended at point ($L-j, 0,0$).
- ' +y ' if the wire is bended at point $(L-j, 0,0)$ on the +y axis.
- ' -y ' if the wire is bended at point $(L-j, 0,0)$ on the -y axis.
- ' $+z$ ' if the wire is bended at point $(L-j, 0,0)$ on the $+z$ axis.
- ' $-z$ ' if the wire is bended at point $(L-j, 0,0)$ on the -z axis.

The end of the input is indicated when $L=0$.

Output

For each case in the input, print one line with the direction pointed by the last segment of the wire, '+ x ', '- x ', '+y', '-y', '+z' or '-z' depending on the case.

```
Sample Input
3
+z -z
3
+z +y
2
+z
4
+z +y +z
5
No +z No No
O
```


Sample Output

$+x$

+z
+z
-x
+z

