The game of Chess has several pieces with curious movements. One of them is the Queen, which can move any number of squares in any direction: in the same line, in the same column or in any of the diagonals, as illustrated by the figure below (black dots represent positions the queen may reach in one move):

The great Chess Master Kary Gasparov invented a new type of chess problem: given the position of a queen in an empty standard chess board (that is, an 8×8 board) how many moves are needed so that she reaches another given square in the board?

Kary found the solution for some of those problems, but is having a difficult time to solve some others, and therefore he has asked that you write a program to solve this type of problem.

Input

The input contains several test cases. The only line of each test case contains four integers X_{1}, Y_{1}, X_{2} and $Y_{2}\left(1 \leq X_{1}, Y_{1}, X_{2}, Y_{2} \leq 8\right)$. The queen starts in the square with coordinates $\left(X_{1}, Y_{1}\right)$, and must finish at the square with coordinates $\left(X_{2}, Y_{2}\right)$. In the chessboard, columns are numbered from 1 to 8 , from left ro right; lines are also numbered from 1 to 8 , from top to bottom. The coordinates of a square in line X and column Y are (X, Y).

The end of input is indicated by a line containing four zeros, separated by spaces.

Output

For each test case in the input your program must print a single line, containing an integer, indicating the smallest number of moves needed for the queen to reach the new position.

Sample Input

4462
3535
5543
0000

Sample Output

