Two players, S and T, are playing a game where they make alternate moves. S plays first.
In this game, they start with an integer N. In each move, a player removes one digit from the integer and passes the resulting number to the other player. The game continues in this fashion until a player finds he/she has no digit to remove when that player is declared as the loser.

With this restriction, its obvious that if the number of digits in N is odd then S wins otherwise T wins. To make the game more interesting, we apply one additional constraint. A player can remove a particular digit if the sum of digits of the resulting number is a multiple of 3 or there are no digits left.

Suppose $N=1234$. S has 4 possible moves. That is, he can remove $1,2,3$, or 4 . Of these, two of them are valid moves.

- Removal of 4 results in 123 and the sum of digits $=1+2+3=6 ; 6$ is a multiple of 3 .
- Removal of 1 results in 234 and the sum of digits $=2+3+4=9 ; 9$ is a multiple of 3 .

The other two moves are invalid.
If both players play perfectly, who wins?

Input

The first line of input is an integer $T(T<60)$ that determines the number of test cases. Each case is a line that contains a positive integer $N . N$ has at most 1000 digits and does not contain any zeros.

Output

For each case, output the case number starting from 1. If S wins then output ' S ' otherwise output ' T '.

Sample Input

3
4
33
771

Sample Output

Case 1: S
Case 2: T
Case 3: T

