A polygon is a plane figure that is bounded by a closed path and composed of a finite sequence of straight line segments. These segments are called its edges, and the points where two edges meet are the polygon's vertices.

You have got a set of N sticks of various lengths. How many ways can you choose K sticks from this set and form a polygon with K sides by joining the end points.

Input

The first line of input is an integer $T(T<100)$ that indicates the number of test cases. Each case starts with a line containing 2 positive integers N and $K(3 \leq N \leq 30 \& 3 \leq K \leq N)$. The next line contains N positive integers in the range $\left[1,2^{31}\right.$), which represents the lengths of the available sticks. The integers are separated by a single space.

Output

For each case, output the case number followed by the number of valid polygons that can be formed by picking K sticks from the given N sticks.

Sample Input

4
43
10102020
64
$\begin{array}{llllll}1 & 1 & 1 & 1\end{array}$
43
102030100000000
66
234567

Sample Output

Case 1: 2
Case 2: 15
Case 3: 0
Case 4: 1

