We have a grid of size $N \times N$. Each cell of the grid initially contains a zero(0) or a one(1). The parity of a cell is the number of 1 s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right).

Suppose we have a grid of size 4×4 :

1	0	1	0	The parity of each cell would be	1	3	1	2
1	1	1	1		2	3	2	1
0	1	0	0		2	1	2	1
0	0	0	0		0	1	0	0

For this problem, you have to change some of the 0 s to 1 s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.

Input

The first line of input is an integer $T(T<30)$ that indicates the number of test cases. Each case starts with a positive integer $N(1 \leq N \leq 15)$. Each of the next N lines contain N integers (0/1) each. The integers are separated by a single space character.

Output

For each case, output the case number followed by the minimum number of transformations required. If it's impossible to achieve the desired result, then output ' -1 ' instead.

Sample Input

3
3
000
000
000
3
000
100
000
3
111
111
000

Sample Output

Case 1: 0
Case 2: 3
Case 3: -1

