Deciding the optimum number of pit stops in a Formula One race is not a trivial matter. The problen lo greatly influenced by many factors: the length of the circuit and the total number of laps, the time
lost in each pit stop, the maximum tank capacity of the car, the fuel consumption per kilometer, the ost in each pit stop, the maximum tank capacity of the car, the fuel consumption per kilometer, the elationship between speed and current weight of the fuel, etc.
You have been hired by the prestigious F1 team SlowChea
You have been hired by the prestigious F1 team SlowCheapCars in order to decide their optimum
it stops strategy. Help them to win the race.
Ear time redor
Each time we do a pit stop, some precious seconds are lost. In particular, there are two components - A constant time, G, due to slowing down, stopping, and accelerating back up to normal speed; ${ }^{\text {and }}$

A variable quantity, $x * H$, depending on the number of litres added to the $\operatorname{tank}(x)$ and the speed
of the highly pressurized refueling system (H, in seconds litre).
Besides, the average speed of the car per lap is not constant; on the contrary, it depends on the fuel
load at a given moment. When the tank is full, the car is normally slower because of its total weight. But when it is almost empty, the car is able to go faster. This variation is given by the number of But when it is almost empty, the car is able to go faster. This variation is given by the number of
seconds gained per lap when the fuel load is reduced 10 litres, F (in seconds per 10 litres). For example, econds gained per lap when the fuel oad is reduced 10 hitres,, (in seconds per 10 itres. For example the tank; if the current fuel load is $D-20$ litres, the lap time will be: $E-2$
The initial fuel load of the car is given by C (in litres). However, according to a recent regulation
the F.R.I.A., we have the possibility to start the race from the pit line; in that case, we are free to y the F.R.I.A.A., we have the possibility to to tart the race from the pit line; in
decide the initial fuel load, at the expense of losing I seconds in the first lap.
Some other parameters of the problem are the total number of laps of the race, A, the length of the
Sind it B (in kilometers), the fuel consumption per lap, J, and the name of the circuit, N.
A pit stop strategy is given by the number of stops and the decision whether to start or not from
e pit line. We want to obtain the optimum strategy of pit stops in a given circuit, that is, the one the pit ind. We want to obtain the optimum strategy of pit stops in a given circuit, that is, the one
net produces the minimum total time to complete the A laps. Obviously, the fuel load of the car can that produces the
never be below 0 .
Input
The first line of the input contains an integer M, indicating the number of test cases.
For each test case, there are the following lines (the text in typewriter appears literally):
Circuit
$A B$
Fuel

$C D$
Speed
F

E F
Pit st
Pit stop
$G H I$
Consumption
Where:
$A:$ number of laps of the race (from 1 to 100). Integer.
B : length of the circuit, i.e., kilometers per lap. Real with 2 decimal digits.
C : initial fuel in the tank of the car, in litres (from 1 to 200). Intege .
D : maximum capacity of the tank of the car, in litres (from 1 to 200 , and $0 \leq C \leq D$). Integer
E : number of seconds per lap starting the lap with the full tank. Real with 2 decimal digits.
F : number of seconds per lap gained for each reduction of 10 litres in fuel load. Real with 1 decimal
: constant time lost in each pit stop, in seconds. Real with 2 decimal digits
H : seconds per litre lost in the pit stop to refuel the car. Real with 2 decimal digits.
I : seconds lost in the first lap if we decide to start from the pit line. Real with 2 decimal digits.
J : litres of fuel consumed per lap (it is supposed to be independent of the speed, and $J \leq D$). Integer
: the name of the circuit. String
Observe that fuel is always considered to be an integer value, while time is given in seconds with 2 decimal digits (rounding is not required in this problem).

Output

For each test case, the output should contain the following lines (the text in typewriter must appear literally):
Circuit N Estimated time T Initial fuel K Pit stops S
Where
T : estimated time (in seconds) to complete the A laps of the race using the optimum strategy. Real with 2 decimal digits.
K : initial fuel load; if K is not equal to C, it means that we start the race from the pit line. Integer.
S : optimum number of pits stops. Intege.
You can suppose that the solution always exists and is unique.

Sample Input

${ }_{\mathrm{Ci}}^{4}$
8 3.34 of Monte Carlo
78 Fuel
peed
Pit stop

Consumption

Circuit
674.57
Fuel
60 180
Speed
81.32
Pit
22.81
Cons
5
Circ
575
Fuel
57
15
Speed
72.32
Pit
22.01
Cons
5
Circ
606.
Fuel
1016
Speed
76.32
Pit
10.0
Cons
6
6
San
Cir
Cir
Estin
6002.
Initi
70
Pit
3
Cirr
Esti
5271
Init
60
Pit
3
Cir
Est
4087
Init
57
Pit
2
Cir
Cir
Est
4763
Ini
160
Pit
4

