A good encoding program has the following properties.

- it has some different symbols.
- Each of these different symbols is encoded into different strings which contains digits from 0 to $k-1$. Like for 3 different symbol and $k=2$ corresponding encoding code can be $0,10,11$.
- You can encode a string containing this different symbol by just concatenating their corresponding encoding code. Like from the previous example the encoding of the string babc is 1001011.
- You select the encoding of these symbols in such a way that you can decode the encoded string without any ambiguity. Means if you build a prefix tree with these encoding code then each of the node will have either $k$ child or none. Huffman tree is a good example with similar tree $k=2$.

Now you have a set of $n+m$ different symbol. But you have lost the encoding string of $m$ of those. Given the encoding code of the rest of the $n$ symbols you have determine how many ways you can select the encoding set of the lost $m$ symbols.

## Input

First line contains $T(1 \leq T \leq 100)$ the number of test cases. Then $T$ test cases follow.
First line of each test case contain 3 integer $n(0 \leq n \leq 1000), m(1 \leq m \leq 200)$ and $k(2 \leq k \leq 5)$. Each of the next $n$ line contains a string containing digits from 0 to $k-1$. This is encoding code for a symbol. These $n$ codes are valid. Means none of these $n$ string will not be prefix of one another.

## Output

For each test case find the number of way you can select the other $m$ encoding string set. The number of way may be huge. Output the result $\% 10007$.

## Sample Input

## 5

052
053
152
000
242
01
10
3203
012
120
201

## Sample Output

