In the picture below you can see a triangle ABC . Point D, E and F divides the sides BC, CA and AB into ratio $1: 2$ respectively. That is $\mathrm{CD}=2 \mathrm{BD}, \mathrm{AE}=2 \mathrm{CE}$ and $\mathrm{BF}=2 \mathrm{AF}$. $\mathrm{A}, \mathrm{D} ; \mathrm{B}, \mathrm{E}$ and C, F are connected. AD and BE intersects at P, BE and CF intersects at Q and CF and AD intersects at R .

So now a new triangle PQR is formed. Given triangle ABC your job is to find the area of triangle PQR.

Input

First line of the input file contains an integer $N(0<N<1001)$ which denotes how many sets of inputs are there. Input for each set contains six floating-point number $A_{x}, A_{y}, B_{x}, B_{y}, C_{x}, C_{y}$. $\left(0 \leq A_{x}, A_{y}, B_{x}, B_{y}, C_{x}, C_{y} \leq 10000\right)$ in one line line. These six numbers denote that the coordinate of points A, B and C are $\left(A_{x}, A_{y}\right),\left(B_{x}, B_{y}\right)$ and $\left(C_{x}, C_{y}\right)$ respectively. A, B and C will never be collinear.

Output

For each set of input produce one line of output. This one line contains an integer AREA. Here AREA is the area of triangle PQR, rounded to the nearest integer.

Sample Input

2
3994.7079251 .6774152 .9167157 .8105156 .8352551 .972
6903.2333540 .9325171 .3823708 .015213 .9592519 .852

Sample Output

