
Cache is a special type of memory providing very small latency for accessing. The basic idea of using
cache is to keep recently used data close to processors. So, modern processors use small cache along
with large main memory. Program performance depends on the cache performance. If data is found in
cache (Hit), execution can proceed normally. On the other hand if data is not found in cache, execution
stalls until that data is fetched from main memory. Computer architects always looks for miss rate of
cache (# of misses per 100 accesses).

When a miss occurs, the new data is kept in the cache and some existing data is removed from
cache. There are several policies to select which one to evict. A common technique used in any computer
systems is LRU (Least Recently Used). According to this scheme, the data that has not been used for
longest time is evicted. Let us explain how this scheme works

Assume a cache with 4 entries. So, if the processor accesses data 1, 2, 3, 4, 5, 2, 3, 99, 2, 5, 4 the
following things will occur

Cache Hit/Miss Data evicted
Miss (1)

1 Miss (2)
1 2 Miss (3)
1 2 3 Miss (4)
1 2 3 4 Miss (5) 1
2 3 4 5 Hit (2)
2 3 4 5 Hit (3)
2 3 4 5 Miss (99) 4
2 3 5 99 Hit (2)
2 3 5 99 Hit (5)
2 3 5 99 Miss (4) 3
2 4 5 99

Here for 11 data references, we have 7 misses. In this problem you have to find the number of misses
for different cache sizes. You will be given data references in several ways-

a) ADDR x: Processor will access data x

b) RANGE b y n: Processor will access all data references in the form b+ y ∗ k, where k is 0 to n− 1

Your will also be given commands STAT to print the number of misses for each cache (excluding the
misses occurred before last STAT command). The above example can be abstracted in the following
way

RANGE 1 1 5

RANGE 2 1 2

ADDR 99

STAT ---------------------------------- 6

ADDR 2

RANGE 5 -1 2

STAT ---------------------------------- 1

Input

Your program starts with a positive integer N (1 ≤ N ≤ 30), which is the number of caches. The next
line contains size of each cache (in increasing order). Cache size will be at least 2 but not exceeding 220.
The next few lines will contain any of ‘RANGE’, ‘ADDR’, or ‘STAT’. The last line will contain ‘STAT’. Total
number of data references (all data accessed by processor) will not exceed 107. For the sample input,
total number of data references is 30 (5+2+1+1+2+10+5+4). Also, the processor uses 24-bit address,
no data reference will exceed 224 − 1 and will be non-negative. The value of b, y, n (in ‘RANGE’), and x
(in ‘ADDR’) will be consistent with all restrictions. Input is terminated by a line containing ‘END’. The
input file has around 20000 lines of inputs.

Output

For each STAT command just print the numbers of misses (as described above) in a line.

Sample Input

2

4 8

RANGE 1 1 5

RANGE 2 1 2

ADDR 99

STAT

ADDR 2

RANGE 5 -1 2

STAT

RANGE 0 10000 10

RANGE 0 20000 5

RANGE 0 30000 4

STAT

END

Sample Output

6 6

1 0

18 13


