Ram is a bright boy who is very much interested in number theory. He was studying about factorials of numbers, and got some interesting idea.

Being a brilliant coder, he started writing a program and implemented the following routines :

- $\operatorname{fact}(n)$ - This function returns the value of n !, where $n \geq 0$
eg. fact(5) returns 120
- $\operatorname{count}(n)$ - This function returns the number of terms in the prime factorisation of n, where $n \geq 0$.
eg. count(24) returns 4 (because, $24=2 * 2 * 2 * 3$). The prime factorisation of 24 contains 4 terms
- $\operatorname{func}(n)$ - This function is explained below.

Ram wrote the function "func" as follows:

```
int func(int $n$)
{
int ans = 0;
for(int $i=0$; ; $i++$)
{
if( count( fact( $i$ ) ) $\le n$)
ans++;
else
return ans;
}
}
```

The above procedure takes too much time to execute. Help Ram by writing a more efficient solution that does the same function as "func" does.

Input

The first line of input gives the number of test cases t.
The next t lines contains a positive integer, representing $n(1 \leq t \leq 1000,1 \leq n \leq 10000000)$.

Output

Print $f u n c(n)$ for the given n, on a line by itself.
Note: Consider 1 as a prime number.

Sample Input

4
1
2
3
4

Sample Output

