For any positive integer $N, N=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}$ that is, any positive integer can be represented as sum of squares of other numbers.

Your task is to print the smallest ' n ' such that $N=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}$.

Input

The first line of the input will contain an integer ' t ' which indicates the number of test cases to follow.
Each test case will contain a single integer ' N ' $(1 \leq N \leq 10000)$ on a line by itself.

Output

Print an integer which represents the smallest ' n ' such that $N=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}$.
Explanation for sample test cases:
$5 \rightarrow$ number of test cases
$1=1^{2}$ (1 term)
$2=1^{2}+1^{2}(2$ terms $)$
$3=1^{2}+1^{2}+1^{2}$ (3 terms)
$4=2^{2}$ (1 term)
$50=5^{2}+5^{2}$ (2 terms)

Sample Input

5
1
2
3
4
50

Sample Output

1
2
3
1
2

