Consider rectangular coordinate system and point L(X, Y) which is randomly chosen among all points in the area A which is defined in the following manner: $A = \{(x, y) | x \in [-a; a]; y \in [-b; b]\}$. What is the probability P that the area of a rectangle that is defined by points (0,0) and (X, Y) will be greater than S?

Input

The number of tests $N \leq 200$ is given on the first line of input. Then N lines with one test case on each line follow. The test consists of 3 real numbers a > 0, b > 0 in $S \geq 0$.

Output

For each test case you should output one number P and percentage '%' symbol following that number on a single line. P must be rounded to 6 digits after decimal point.

Sample Input

Sample Output

23.348371% 0.000000% 100.00000%