Fermat's theorem states that for any prime number p and for any integer $a>1$, $a^{p}==a(\bmod \mathrm{p})$. That is, if we raise a to the p th power and divide by p, the remainder is a. Some (but not very many) nonprime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given $2<p \leq 1,000,000,000$ and $1<$ $a<p$, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing ' 00 '. Each test case consists of a line containing p and a.

Output

For each test case, output 'yes' if p is a base-a pseudoprime; otherwise output 'no'.

Sample Input

32
103
3412
3413
11052
11053
00

Sample Output

no
no
yes
no
yes
yes

