7 is a very special number. It is the smallest number that can't be represented as a sum of fewer than four non-zero squares. It is also the smallest happy number greater than 1. $\mathbf{7}$ is considered to be magical in many cultures. In this problem, you will discover the amazing hidden magic of $\mathbf{7}$ in graph theory :-).

Given a grid graph G, with dimensions $7 \times n$, as shown below (the vertices are at the center of the grid cells). Compute the last 4 digits of $A+B+C$, where
$A=$ The total number of different Perfect matchings of G. A Perfect matching is a matching which covers all vertices of G.
$B=$ The total number of different Hamiltonian cycles of G. A Hamiltonian cycle visits each vertex exactly once and comes back to the original vertex.
$C=$ The total number of different Spanning subgraphs of G, such that every connected component of each Spanning subgraph is a cycle.

Input

The input will consist of at most 100 lines with the value of n on each line. All numbers fit into unsigned 64 bit integers.

Output

For each line of input, output the answer on a single line. If there are fewer than 4 digits in $A+B+C$, pad to 4 digits with leading 0's, otherwise output the last 4 digits as described above.

Sample Input

Sample Output

0000
0030
5900 5765

