Find the number of solutions, the equation $\sum X_i = s$ have, if $A_i \leq X_i \leq B_i$ for each $i = 1 \dots n$.

For example:

 $\begin{array}{l} X_1 + X_2 + X_3 = 10 \\ -1 \leq X_1 \leq 3 \\ 2 \leq X_2 \leq 4 \\ 6 \leq X_3 \leq 7 \end{array}$

The above set of equations has 6 solutions. They are: $\{1,4,7\}$, $\{0,3,7\}$, $\{0,4,6\}$, $\{1,2,7\}$, $\{1,3,6\}$ and $\{2,2,6\}$.

You are given n the number of variables and the range of them. Your task is to calculate the number of solutions of that equation.

Input

First line of the Input contains $T (\leq 50)$ the number of test cases. Then T test cases follow. First line of each test case contains 2 integer $n (1 \leq n \leq 10)$ and $s (-50000 \leq s \leq 50000)$. Next n lines each contain 2 integers describing the range of each variable. The *i*-th line A_i and $B_i (-10000 \leq A_i \leq B_i \leq 10000)$. X_i can take any integral value in the range $[A_i, B_i]$.

Output

For each test case output contains one integer denoting the number of solutions of the given equations. Output the value **modulo 200003**.

Sample Input

Sample Output

6