Find the number of solutions, the equation $\sum X_{i}=s$ have, if $A_{i} \leq X_{i} \leq B_{i}$ for each $i=1 \ldots n$.
For example:
$X_{1}+X_{2}+X_{3}=10$
$-1 \leq X_{1} \leq 3$
$2 \leq X_{2} \leq 4$
$6 \leq X_{3} \leq 7$
The above set of equations has 6 solutions. They are: $\{1,4,7\},\{0,3,7\},\{0,4,6\},\{1,2,7\},\{1,3,6\}$ and $\{2,2,6\}$.

You are given n the number of variables and the range of them. Your task is to calculate the number of solutions of that equation.

Input

First line of the Input contains $T(\leq 50)$ the number of test cases. Then T test cases follow. First line of each test case contains 2 integer $n(1 \leq n \leq 10)$ and $s(-50000 \leq s \leq 50000)$. Next n lines each contain 2 integers describing the range of each variable. The i-th line A_{i} and $B_{i}\left(-10000 \leq A_{i} \leq B_{i} \leq 10000\right)$. X_{i} can take any integral value in the range $\left[A_{i}, B_{i}\right]$.

Output

For each test case output contains one integer denoting the number of solutions of the given equations. Output the value modulo 200003.

Sample Input

1
310
-1 3
24
67

Sample Output

6

