Sultan has a rectangle of R rows and C columns. Each cell of this rectangle contains an integer. Sultan chooses n subrectangles. The i-th subrectangle has $R i$ rows and $C i$ columns and it is nested inside $(i-1)$-th subrectangle. The first subrectangle is nested inside the initial rectangle. Sultan then multiplies all the integers outside the first subrectangle with M_{0}. Then he multiplies all the integers inside ith rectangle but outside $(i+1)$-th rectangle with M_{i}. Then he multiples all the integers inside n-th subrectangle with M_{n}. So he get a new rectangle of integers. The sum of all the integers of this new rectangle is S. Help Sultan to choose all this subrectangles in such a way so that S is maximized.

In the above figure, the outer most portion (that is not contained in any of the sub rectangle) is multiplied by M_{0}, the portion inside the first rectangle, but outside the second one by M_{1}, portion inside 2 nd and outside 3 rd by M_{2}, and so forth. The portion inside the n-th sub rectangle is multiplied by M_{n}.

Input

First line of the input contains $T(\leq 20)$ the number of test cases. First line of the each test case contains 3 integers $R(1 \leq R \leq 500), C(1 \leq C \leq 500)$ and $n(1 \leq n \leq 5)$. Second line contains n integers $R_{1}, R_{2}, \ldots, R_{n}\left(R>R_{1}>R_{2}>\ldots>R_{n}\right)$. Third line contains n integers $C_{1}, C_{2}, \ldots, C_{n}$ $\left(C>C_{1}>C_{2}>\ldots>C_{n}\right)$. The values R_{i}, C_{i} describes the dimensions of the i-th sub rectangle. Fourth line contains $n+1$ integers $M_{0}, M_{1}, \ldots, M_{n}\left(-10 \leq M_{i} \leq 10\right)$, the values of each multiplier. Lines 5 to line $4+R$ each contain C integers. The j-th integer in the $(i+4)$-th line is the number in the i-th row and j-th column of the initial rectangle. All the integers in the initial rectangle is between -100 to +100 inclusive.

Output

For each test case output contains one integer denoting the maximum value of S.

Sample Input

```
1
6 2
4
31
0 1 -1
-1 -1 -1 -1 -1 -1 -1
-1
-1 2 -1 2 -1 -1
-1 2 -1 2 -1 -1
-1 2 2 2 -1 -1
-1 -1 -1 -1 -1 -1
```


Sample Output

