There are four types of coins with value c_{1}, c_{2}, c_{3} and c_{4}, and there are only d_{1}, d_{2}, d_{3} and d_{4} number of these coins respectively. How many ways are there to obtain a value v by adding up these coins?

For example, if you have $3 \$ 1$-coins, $2 \$ 2$-coins, $3 \$ 5$-coins, $1 \$ 10$-coin, there are 4 ways to obtain $\$ 10$ from those coins:
$10=1+1+1+2+5$
$10=1+2+2+5$
$10=5+5$
$10=10$

Input

The input begins with an integer $N(\leq 100)$ which indicates the number of test cases followed. Each of the following test cases begins with five positive integers $c_{1}, c_{2}, c_{3}, c_{4}, q$, where $1 \leq c_{1}<c_{2}<c_{3}<c_{4} \leq$ 1000 and $q \leq 100$. It is then followed by q queries. Each query consists of 5 integers, $d_{1}, d_{2}, d_{3}, d_{4}, v$, where $1 \leq d_{1}, d_{2}, d_{3}, d_{4}, v \leq 10^{5}$.

Output

For each query from each test case, print out the number of way to obtain v by adding up $d_{1} c_{1}$-coins, $d_{2} c_{2}$-coins, $d_{3} c_{3}$-coins and $d_{4} c_{4}$-coins in a single line.

Sample Input

2
125102
323110
1000222900
102030401
100100100100101

Sample Output

4
27
0

