You might find it interesting that the digits $1,2,9$ may be arranged to form two decimal numbers whose ratio is $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \frac{1}{9}$. For example:

$$
\frac{7293}{14586}=\frac{1}{2}, \frac{5832}{17496}=\frac{1}{3}, \ldots, \frac{6381}{57429}=\frac{1}{9}
$$

This fact is also true for most other number systems. So in general we can say that the digits $1,2, \ldots, D$ may be arranged to form two $(D+1)$ based numbers whose ratio is $\frac{1}{2}, \frac{1}{B}, \frac{1}{4}, \ldots \frac{1}{D}$. In this problem you will be asked to find such fractions. In other words given the base B and denominator N you will have to find two B-based integers P and Q (Both of them combined should use the digits $1,2,3, \ldots, B-1$ exactly once.) such that:

$$
\frac{P}{Q}=\frac{1}{N}
$$

You can safely assume that the digits larger than value 9 are represented by capital English letters starting from ' A '. So the digits of 12 based number system are ' 1 ', ' 2 ', ' 3 ', ' 4 ', ' 5 ', ' 6 ', ' 7 ', ' 8 ', ' 9 ', ' A ', ' B ' (Zeros are not allowed in this problem). Similarly, the digits of 27 based number system are ' 1 ', ' 2 ', ' 3 ', , . , 'L', 'M', ' N ', ' O ', ' P ', ' Q '.

Input

The input file contains at most 300 lines of inputs. Each line contains two decimal integers $B(1<B<$ $28)$ and $N(1<N<B)$.

Input is terminated by a set where the value of B and N is zero. This set should not be processed.

Output

For each set of input produce one line of output. This line contains the two input values followed by two B-based integers separated by a ' $/$ ' (front slash). The two B-based integers denote the values of P and Q respectively. So they actually denote the fraction $\frac{P}{Q}$. There will be no such inputs for which P and Q cannot be found. If there is more than one solution any one of them will do.

Sample Input

102
109
144
00

Sample Output

102 7932/15864
109 8361/75249
144 CD5621/39B7A84

