A prime number p is a natural number greater than 1 that has only two natural divisors: 1 and p itself. Any natural number n, such that $n>1$, has a unique decomposition into prime factors, for instance $4=2 \times 2,5=5,6=2 \times 3$.

Let $\operatorname{sopf}(n)$ denote the sum of the prime factors of a natural number n. For instance, $\operatorname{sop} f(4)=$ $2+2=4, \operatorname{sopf}(5)=5$, and $\operatorname{sop} f(6)=2+3=5$.

If we take the result of this sum, we may compute again the sum of its prime factors, and repeat this ad nauseam. However, at some point, we always reach a fix-point, that is a number f such that $f=\operatorname{sop} f(f)$. For instance, starting from $8, \operatorname{sopf}(8)=2+2+2=6$, then $\operatorname{sop} f(6)=2+3=5$, and $\operatorname{sopf}(5)=5$: applying repetitively sopf from 8 generates the sequence $8,6,5,5,5, \ldots$ So, from the initial value 8 , it takes 3 applications of sopf to discover that we have reached a fix-point.

Let $\operatorname{lsopf}(n)$ denote the number of applications of $\operatorname{sop} f$ from n that is required to discover that the fix-point has been reached. For instance, $l \operatorname{sop} f(8)=3$ and $l \operatorname{sop} f(4)=1$.

Your task is, given two natural numbers n and m (with $n>1$ and $m>1$), find the largest value the function lsopf takes in the interval between n and m.

Input

The first line of input gives the number of cases, T (with $1 \leq T \leq 150$). T test cases follow. Each test case is on a single line, containing two natural numbers n and m, such that $1<n, m \leq 500000$.

Output

For each test case first print a line 'Case \#C:' (where C is the number of the current test case). Then print another line with the maximum of the function lsopf in the interval bounded by n and m.

Sample Input

2
210
1120

Sample Output

Case \#1:
3
Case \#2:
4

