You might have heard the game of 24: given 4 integers, you're to make an expression to get the number 24. For example, given $4,4,10,10$, you can write $(10 * 10-4) / 4=24$, given $1,5,5,5$, you can write $(5-1 / 5) * 5=24$.

In this problem, your task is a little bit harder: count the number of numbers that can be made. Don't forget to count negative numbers and non-integers. You can use binary additions, subtractions, multiplications and divisions with parenthesis (unary operations are not allowed). Numbers cannot be concatenated to form a larger number (e.g. you cannot concatenate 1 and 2 to get 12).

For example, given two 1 's, exactly 3 numbers can be made: $1+1=2,1-1=0,1 * 1=1$. You cannot get 11 or -1 .

Input

The input consists of at most 30 test cases. Each case begins with a line containing a single integer n $(1<n<7)$, the number of integers given. The next line contains n non-negative integers not greater than 10 . The last case is followed by a single zero, which should not be processed.

Output

For each test case, print the case number and the number of numbers that can be made.

Sample Input

2
11
3
147
4
1235
0

Sample Output

Case 1: 3
Case 2: 47
Case 3: 255

