Your task is to design a 4 -input 4 -output digital circuit, given some 2 -input 1-output gates.
Every gate is described by three 0-1 integers Y_{00}, Y_{01} and Y_{11}, the output of the gate when there are exactly 0,1 and 2 of the inputs are set to 1 . Note that all the gates are symmetric, so if there is exactly one input is set to 1 , the output is the same no matter which one is set. Make sure that both inputs of each gate are connected to the output of another gate or a signal source, since the output will be unpredictable if at least one input is dangling. Be aware that the output of
 a gate can never go back to its input either directly or indirectly (i.e. the circuit should not contain a directed cycle).

To make your design as simple as possible, you should use minimal number of gates. It is guaranteed that the circuit could be designed with at most 6 gates.

Input

The input consists of at most 30 test cases. Each case contains a single integer $n(n<6)$, indicating there are n kinds of gates. Each of the n lines contained four integers, $m_{i}, Y_{00}, Y_{01}, Y_{11}$, the number of available gates of this kind, the output values when exactly $0,1,2$ inputs are set to 1 . There are at most 10 gates in total (i.e. the sum of m_{i} will not exceed 10). The next line contains 16 integers $Y_{0000}, Y_{0001}, Y_{0010}, \ldots, Y_{1111}$, the output values for each possible input combination. $Y_{\text {prqs }}$'s binary form is the output of the circuit when the four inputs are p, q, r, s respectively. That is, if $Y_{p q r s}$'s binary form is $a b c d$, then the four outputs are a, b, c, d respectively. The last case is followed by a single zero, which should not be processed.

Output

For each test case, print the case number and an integer p, the minimal number of gates required. The next p lines each contains four integers s, k, a and b, where s is the serial number of the gate (inputs of the entire circuit are numbered $1^{\sim} 4$, gates are numbered $5^{\sim} p+4$), k is the type number of the gate (gate types are numbered $1^{\sim} n$ in the same order as they appeared in the input), a and b are serial numbers of two inputs of the gate. It should be satisfied that $a<s$ and $b<s$. The last line should contain four integers: the serial numbers of the gates of four outputs (should be all between 1 and $p+4$). There should be exactly one empty line after each case.

Sample Input

1
5010
0365121510981114134721
1
2110
8121014913111581210141537
0

Sample Output

Case 1: 3
5112
6123
7134
5674

Case 2: 1
5121
5432

