People in the Byteland do not love large prime numbers. So they never use the integers having prime factors greater than 30 . They love perfect square number. An integer is a perfect square if its square root is an integer. $0,1,4,9$ are perfect square numbers. But -4 or 3 is not perfect square.

Now people at Byteland have a sequence of n numbers. They select ${ }^{n} \mathrm{C}_{2}$ pairs of numbers from this sequence. A pair is a square pair if the product of its numbers is a perfect square. They are interested to calculate the number of square pairs X among these ${ }^{n} \mathrm{C}_{2}$ pairs. Again they select ${ }^{n} \mathrm{C}_{3}$ triples of numbers from this sequence. A triple is a square triples if the product of its numbers is a perfect square. They are interested to calculate the number of square triples Y among these ${ }^{n} \mathrm{C}_{3}$ triples. Help them to calculate X and Y.

Input

First line of the input contains T the number of test case. Then following lines contains T Test cases.
Each case starts with a line containing one integer n the length of the sequence. The next line contains n integers separated by a single space.

Output

For each test case output contain 2 integers X and Y separated by a single space.

Constraints:

- $0<n \leq 200000$
- Each number in the sequence will have absolute value $<10^{18}$.
- No number in the sequence will have prime factor greater than 30 . But the sequence may contain the number zero as an exception.

Sample Input

```
5
```

3
222
3
224
3
$2-22$
3
025
4
10143529

Sample Output

