The factorial n! of a number n is defined as n! = 1 * 2 * 3 * ... * n.

The function $F_1(n) = 1!*2!*3!*...*n!$

And the function $F_2(n) = F_1(1) * F_1(2) * F_1(3) * \dots * F_1(n)$

Given two numbers n and b your job is to find the number of trailing zeroes in $F_2(n)$ when expressed in base b.

Input

The input file contains around 2000 lines of inputs. Each line contains two integers n ($1 \le n \le 1000000$) and b ($2 \le b \le 10000$). Input is terminated by a line containing two zeroes.

Output

For each line of input produce one line of output which contains an integer Z, which denotes the number of trailing zeroes in $F_2(n)$, when expressed in base b.

Sample Input

10 3

4 2

0 0

Sample Output

57

8