The factorial n ! of a number n is defined as $n!=1 * 2 * 3 * \ldots * n$.
The function $F_{1}(n)=1!* 2!* 3!* \ldots * n$!
And the function $F_{2}(n)=F_{1}(1) * F_{1}(2) * F_{1}(3) * \ldots * F_{1}(n)$
Given two numbers n and b your job is to find the number of trailing zeroes in $F_{2}(n)$ when expressed in base b.

Input

The input file contains around 2000 lines of inputs. Each line contains two integers $n(1 \leq n \leq 1000000)$ and $b(2 \leq b \leq 10000)$. Input is terminated by a line containing two zeroes.

Output

For each line of input produce one line of output which contains an integer Z, which denotes the number of trailing zeroes in $F_{2}(n)$, when expressed in base b.

Sample Input

103
42
00

Sample Output

