Everyone knows about base-2 (binary) integers and base-10 (decimal) integers, but what about base $\mathbf{i}-\mathbf{1}$? A complex integer n has the form $n=a+b \mathbf{i}$, where a and b are integers, and \mathbf{i} is the square root of -1 (which means that $\mathbf{i}^{2}=-1$). A complex integer n written in base $(\mathbf{i}-\mathbf{1})$ is a sequence of digits $\left(b_{i}\right)$, writen right-to-left, each of which is either 0 or 1 (no negative or imaginary digits!), and the following equality must hold.

$$
n=b_{0}+b_{1}(\mathbf{i}-\mathbf{1})+b_{2}(\mathbf{i}-\mathbf{1})^{2}+b_{3}(\mathbf{i}-\mathbf{1})^{3}+\ldots
$$

The cool thing is that every complex integer has a unique base-(i-1) representation, with no minus sign required. Your task is to find this representation.

Input

The first line of input gives the number of cases, N (at most 20000). N test cases follow. Each one is a line containing a complex integer $a+b i$ as a pair of integers, a and b. Both a and b will be in the range from $-1,000,000$ to $1,000,000$.

Output

For each test case, output one line containing 'Case \#x:' followed by the same complex integer, written in base $\mathbf{i}-\mathbf{1}$ with no leading zeros.

Sample Input

4
10
23
110
00

Sample Output

Case \#1: 1
Case \#2: 1011
Case \#3: 111001101
Case \#4: 0

