We are going to generate a sequence of integers in binary. Start with the sequence

Reflect it in the horizontal line, prepend a zero to the numbers in the top half and a one to the numbers on the bottom and you will get

$$
\begin{equation*}
00 \tag{01}
\end{equation*}
$$

11
10

Repeat this again, and you will have 8 numbers
0000
0011
0113
0102
1106
1117
1015
1004
The corresponding decimal values are shown on the right.
These sequences are called Reflected Gray Codes for 1,2 and 3 bits respectively. A Gray Code for n bits is a sequence of 2^{n} different n-bit integers with the property that every two neighbouring integers differ in exactly one bit. A Reflected Gray Code is a Gray Code constructed in the way shown above.

Input

The first line of input gives the number of cases, N (at most 250000). N test cases follow. Each one is a line with 2 integers: $n(1 \leq n \leq 30)$ and $k\left(0 \leq k<2^{n}\right)$.

Output

For each test case, output the integer that appears in position k of the n-bit Reflected Gray Code.

Sample Input

14
10
11
20
21
22
23
30
31
32
33
34
35
36
37

Sample Output

