You are probably familiar with the binary representation of integers, i.e. writing a nonnegative integer n as $\sum a_{i} 2^{i}$, where each a_{i} is either 0 or 1 . In this problem, we consider a so called signed binary representation, in which we still write n as $\sum a_{i} 2^{i}$, but allow a_{i} to take on the values $-1,0$ and 1 . We write a signed binary representation of a number as a vector $\left(a_{k}, a_{k-1}, \ldots, a_{1}, a_{0}\right)$. For instance, $n=13$ can be represented as $(1,0,0,-1,-1)=2^{4}-2^{1}-2^{0}$.

The binary representation of a number is unique, but obviously, the signed binary representation is not. In certain applications (e.g. cryptography), one seeks to write a number n in signed binary representation with as few non-zero digits as possible. For example, we consider the representation $(1,0,0,-1)$ to be a better representation of $n=7$ than $(1,1,1)$. Your task is to write a program which will find such a minimal representation.

Input

The input consists of several test cases (at most 25), one per line. Each test case consists of a positive integer $n \leq 2^{50000}$ written in binary without leading zeros. The input is terminated by a case where $n=0$, which should not be processed.

Output

For each line of input, output one line containing the signed binary representation of n that has the minimum number of non-zero digits, using the characters ' - ' for -1, ' 0 ' for 0 and ' + ' for +1 . The number should be written without leading zeros. If there are several possible answers, output the one that is lexicographically smallest (by the ASCII ordering).

Sample Input

10000
1111
10111
0

Sample Output

+0000
+000-
++00-

