You will be given two sets of integers. Lets call them set \mathbf{A} and set \mathbf{B}. Set \mathbf{A} contains n elements and set \mathbf{B} contains m elements. You have to remove k_{1} elements from set \mathbf{A} and k_{2} elements from set \mathbf{B} so that of the remaining values no integer in set \mathbf{B} is a multiple of any integer in set \mathbf{A}. k_{1} should be in the range $[0, n]$ and k_{2} in the range $[0, m]$.

You have to find the value of $\left(k_{1}+k_{2}\right)$ such that $\left(k_{1}+k_{2}\right)$ is as low as possible.
P is a multiple of Q if there is some integer K such that $P=K * Q$.

Suppose set \mathbf{A} is $\{2,3,4,5\}$ and set \mathbf{B} is $\{6,7,8,9\}$. By removing 2 and 3 from \mathbf{A} and 8 from \mathbf{B}, we get the sets $\{4,5\}$ and $\{6,7,9\}$. Here none of the integers 6,7 or 9 is a multiple of 4 or 5 .

So for this case the answer is 3 (2 from set \mathbf{A} and 1 from set B).

Input

The first line of input is an integer $T(T<50)$ that determine the number of test cases. Each case consists of two lines. The first line starts with n followed by n integers. The second line starts with m followed by m integers. Both n and m will be in the range [1,100]. All the elements of the two sets will fit in 32 bit signed integer.

Output

For each case, output the case number followed by the answer.

Sample Input

2
42345
46789
3100200300
1150

Sample Output

Case 1: 3
Case 2: 0

