You will be given n integers $<A_{1} A_{2} A_{3} \ldots A_{n}>$. Find a permutation of these n integers so that summation of the absolute differences between adjacent elements is maximized.

Suppose $n=4$ and the given integers are $<4215>$. The permutation $<2514>$ yields the maximum summation.

For this permutation $\operatorname{sum}=\operatorname{abs}(2-5)+\operatorname{abs}(5-1)+\operatorname{abs}(1-4)=3+4+3=10$.
Of all the 24 permutations, you wont get any summation whose value exceeds 10 . We will call this value, 10 , the elegant permuted sum.

Input

The first line of input is an integer $T(T<100)$ that represents the number of test cases. Each case consists of a line that starts with $n(1<n<51)$ followed by n non-negative integers separated by a single space. None of the elements of the given permutation will exceed 1000 .

Output

For each case, output the case number followed by the elegant permuted summation.

Sample Input

3
44215
41111
2101

Sample Output

Case 1: 10
Case 2: 0
Case 3: 9

