Consider an integer sequence consisting of N elements, where:

$$X_0 = A$$

 $X_i = ((X_{i-1} * B + C)\%M) + 1$ for $i = 1$ to $N - 1$

You will be given the values of A, B, C, M and N. Find out the number of consecutive subsequences whose sum is a multiple of M.

Consider an example where A = 2, B = 1, C = 2, M = 4 and N = 4.

So,
$$X_0 = 2$$
, $X_1 = 1$, $X_2 = 4$ and $X_3 = 3$.

The consecutive subsequences are $\{2\}$, $\{2\ 1\}$, $\{2\ 1\ 4\}$, $\{2\ 1\ 4\ 3\}$, $\{1\}$, $\{1\ 4\ 3\}$, $\{4\}$, $\{4\ 3\}$ and $\{3\}$.

Of these 10 'consecutive subsequences', only two of them adds up to a figure that is a multiple of 4 — $\{1\ 4\ 3\}$ and $\{4\}$.

Input

The first line of input is an integer T (T < 500) that indicates the number of test cases. Eact case consists of 5 integers A, B, C, M and N. A, B and C will be non-negative integers not greater than 1000. N and M will be a positive integers not greater than 10000.

Output

For each case, output the case number followed by the result.

Sample Input

2 2 1 2 4 4 923 278 195 8685 793

Sample Output

Case 1: 2 Case 2: 34