Consider an integer sequence consisting of N elements, where:

$$
\begin{aligned}
X_{0} & =A \\
X_{i} & =\left(\left(X_{i-1} * B+C\right) \% M\right)+1 \quad \text { for } i=1 \text { to } N-1
\end{aligned}
$$

You will be given the values of A, B, C, M and N. Find out the number of consecutive subsequences whose sum is a multiple of M.

Consider an example where $A=2, B=1, C=2, M=4$ and $N=4$.
So, $X_{0}=2, X_{1}=1, X_{2}=4$ and $X_{3}=3$.
The consecutive subsequences are $\{2\},\{21\},\{214\},\{2143\},\{1\},\{14\},\{143\},\{4\},\{43\}$ and $\{3\}$.

Of these 10 'consecutive subsequences', only two of them adds up to a figure that is a multiple of 4 $-\{143\}$ and $\{4\}$.

Input

The first line of input is an integer $T(T<500)$ that indicates the number of test cases. Eact case consists of 5 integers A, B, C, M and $N . A, B$ and C will be non-negative integers not greater than 1000. N and M will be a positive integers not greater than 10000 .

Output

For each case, output the case number followed by the result.

```
Sample Input
2
2 1 244
923 278 195 8685793
```


Sample Output

Case 1: 2
Case 2: 34

