Consider an n-by-n matrix A. We define $A^{k}=A * A * \ldots * A$ (k times). Here, $*$ denotes the usual matrix multiplication.

You are to write a program that computes the matrix $A+A^{2}+A^{3}+\ldots+A^{k}$.

Example

Suppose $A=\left(\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$. Then $A^{2}=\left(\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, thus:

$$
A+A^{2}=\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 4 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 2 & 4 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Such computation has various applications. For instance, the above example actually counts all the paths in the following graph:

There are $\mathbf{4}$ paths from \mathbf{I} to $\mathbf{3}$

1. $1-\mathrm{A} 1->2-\mathrm{B} 1->3$
2. $1-\mathrm{A} 1->2-\mathrm{B} 2->3$
3. $1-\mathrm{A} 2->2-\mathrm{B} 1->3$
4. $1-\mathrm{A} 2->2-\mathrm{B} 2->3$

Input

Input consists of no more than 20 test cases. The first line for each case contains two positive integers n (≤ 40) and $k(\leq 1000000)$. This is followed by n lines, each containing n non-negative integers, giving the matrix A.

Input is terminated by a case where $n=0$. This case need NOT be processed.

Output

For each case, your program should compute the matrix $A+A^{2}+A^{3}+\ldots+A^{k}$. Since the values may be very large, you only need to print their last digit. Print a blank line after each case.

Sample Input

32
020
002
000
00

Sample Output

```
O 24
0 2
0 0
```

